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We apply a particular version of ADI called Dynamic ADI (DADI) to 
the strongly coupled Znd-order partial differential equations that arise 
from the streamlined Darwin field (SDF) equations. The DADI method 
is applied in a form that we show is guaranteed to converge to the 
desired solution of the finite difference equation. We give overviews of 
our test case, the SDF problem, and the DADI method, with some 
justification for our choice of operator splitting. Finally, we apply DADI 
to the strongly coupled SDF equations and present the results from our 
test case. Our implementation requires a factor of 7 less storage and has 
proven to be a factor of 4 (in the worst case) to several orders of 
magnitude faster than competing methods. 0 1992 Academwz Press. Inc. 

I. INTRODUCTION 

In computational physics one frequently encounters the 
need to solve a strongly coupled set of partial differential 
equations. Examples can readily be found [l-5] in solu- 
tions of Maxwell’s equations and their various approxi- 
mations needed in the simulation of plasma physics 
phenomena. Our desire to model laboratory plasma 
behavior is the source of our difficulties: if we were content 
to study small time and spatial scales, the time honored 
leapfrog integration of Maxwell’s equations provides an 
excellent solution-though some issues regarding outflow 
boundary conditions on oblique boundaries are trouble- 
some. Inevitably, time or spatial scales are enlarged and the 
bounds of affordable plasma simulation are encountered. 
Fortunately many important macroscopic plasma studies 
do not require the richness of the full electromagnetic 
model. Implicit PIC methods would seem to provide relief 
in these situations because large time steps allow unneeded 
high-frequency physics to damp away. However, implicit 
codes encounter similar bounds of affordability; though an 
irrelevant timescale need not be resolved, inevitably some 
computational machinery must be exercised just in case the 
user chooses a small time step. 

Much of computational plasma physics is addressed to 

finding appropriate “reduced” models that trade increased 
computational complexity for the complete neglect of 
selected space and time scales. The increased complexity 
usually shows up in model equations that include more and 
stronger coupling to each other. As time steps increase it 
becomes more difficult to freeze one variable while we 
advance another. Implicit formulations of the model are the 
answer, in principle, but the numerical solution must be 
efficient enough to provide a reward for the increased com- 
putational effort required. In our considerations of these 
issues we have exploited an old method in a new way that 
is proving useful for these strongly coupled equations. 

Our particular motivation in the work reported here has 
been to find an effective yet affordable method to apply in 
simulation models employing the streamlined Darwin field 
(SDF) equations [S]. The Darwin approximation of 
Maxwell’s equations has been discussed by several authors; 
the essence of the model is that the part of the displacement 
current that gives rise to purely electromagnetic (EM) 
oscillations is ignored. Dropping this term is equivalent to 
ignoring the retardation that generates these modes. The 
beneficial effects are that the restrictive Courant condition 
on EM propagation need not be satisfied and that the 
coupling of plasma source fluctuations in noisy PIC 
representations does not lead to excessive energy loss to 
purely EM modes. 

A problem with the traditional Darwin approach is that 
boundary conditions are required that are beyond the 
usual limits of physical intuition. There are two levels of 
difficulties. The most straightforward level comes from 
our need to break up the E into its component solenoidal 
(electromagnetic) and irrotational (electrostatic) parts- 
introducing some ambiguity into the boundary conditions 
needed for each part so that the sum represents the correct 
physics. The other level is less obvious. At the heart of the 
calculation for the solenoidal E field is an equation that 
requires the solenoidal part of a plasma source term, the 
time derivative of the total plasma current, that is itself 
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derived from other plasma source terms and field quantities. 
To decompose this source term properly requires boundary 
conditions that are interrelated to several others in both 
time and space. The complexity that results has severely 
restricted the utility of the Darwin model-leading to the 
usual trick of moving the plasma “far away” from all 
boundaries. Unfortunately, for plasma “near” physical 
boundaries such issues cannot be ignored. 

The purpose of the SDF formulation is to provide an 
alternative solution path for the Darwin model that obviates 
the most troubling boundary conditions. The cost for bound- 
ary condition relief is that the equations for the inductive 
electric lieid become even more strongly coupled. The 
purpose of this paper is to present an uncommon use of the 
alternating direction implicit (ADI) technique that provides 
a clean, straightforward solution, without iteration between 
the several equations. The method works so well that we 
expect there to be many other applications, though no 
others will be presented here. 

The plan of this paper is as follows: in Section II we 
present an abbreviated derivation of the Darwin inductive 
electric field equations and show how the SDF formulation 
eliminates the least intuitive of the boundary conditions. 
The SDF formulation is then followed to derive the coupled 
equations for our test problem. Section III gives an intuitive 
view of how the dynamic AD1 algorithm works and how we 
have applied it to the coupled equations of Section II. 
Finally in Section IV, we give our results and a brief 
comparison with the BCG method applied to this same 
problem. 

II. THE INDUCTIVE E EQUATIONS IN THE 
DARWIN APPROXIMATION 

ILA. Motivation 

Boundary conditions pose significant difficulties with the 
traditional Darwin model for all but the trivial case where 
all boundary conditions are assumed far from the plasma so 
that boundary condition choices are insignificant. These dif- 
ficulties arise at several points in the model but are nowhere 
more acute than in the algorithm used to compute the 
inductive electric field. 

Before starting a discussion of the equations, a few delini- 
tions are given. From Helmholtz’s theorem any vector may 
be represented as the sum of solenoidal and irrotational 
parts. The solenoidal part of a vector has no divergence and 
could be obtained from the curl of a vector potential, and 
the irrotational part has no curl and might come from the 
gradient of a scalar potential. We can always find such 
potentials though we may choose not to for convenience. 
We use the subscript sol to refer to the solenoidal part and 
the subscript irr to refer to the irrotational part. Vector 

decomposition of a typical vector J is accomplished by 
defining Jirr and JsO, with 

where 

V2$= -V.J. 

(la) 

Generally the boundaries are not far from the physics of 
interest and therefore the choice of boundary conditions 
is important. Unfortunately, boundary conditions that 
properly represent the physics can easily become the hardest 
part of the problem. Efforts to properly represent a plasma- 
wall interaction generally use a Neumann condition on one 
or more of the simulation boundaries. This condition has 
the form 

V normal ti = - Jirr . fi (lc) 

which corresponds physically to the normal component of 
the irrotational part of J. 

The traditional Darwin model has been motivated and 
discussed by several authors [4-83. The reader is directed to 
the work of Nielson and Lewis [6] and the streamlined 
version of Hewett and Boyd [S] as prerequisites for the 
brief details and summary we give here. We start with the 
Darwin limit of Maxwell’s equations in which the solenoidal 
part of the displacement current has been discarded: 

(2) 

Introducing the solenoidal vector potential A, such that 
B=VxAandV-A=O,wehave 

V2A= -F JsOl, 

and the equation for the electrostatic potential @ is the 
usual 

V2@ = -4np. (4) 

Using E = -V@ - (l/c)A, we obtain the irrotational part 
of the electric field from the gradient of 0. The equation for 
Eso, comes from the time derivative of Eq. (3) with the 
above definition of E, resulting in 

V2E,,, = $ JsO,. 
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As in Nielson and Lewis, 

4n 
2 J = K + 5 X B + ,U(Eirr + Esol). (64 

We define Q such that 

$J=Q+PL (6b) 

so that Eq. (5) becomes 

V*L = L-Q + PJLJ~~I. (7) 

These equations comprise the Darwin limit of Maxwell’s 
equations. They require boundary conditions that are, with 
the notable exception of Eq. (7), physically motivated but 
often strongly interrelated [S]. 

Equation (7) has proven difficult to solve+specially for 
large I*. The limit of large p corresponds to an important 
parameter regime for the Darwin model. The parameter p is 
the sum over species of the square of the plasma frequencies 
divided by the square of the speed of light-the inverse of 
the square of the collisionless electromagnetic skin depth. 
Comparing the scaling of the terms in Eq. (7), we see that 
the ratio of the p term to the V2 term is a measure of spatial 
resolution of the skin depth, with the small ~1 case corre- 
sponding to good resolution. If forced to work with the 
radiationless Darwin model only in the small p limit by 
numerical solution difficulties, we will have lost a large part 
of the advantage afforded by the Darwin model. Thus, we 
examine the difficulties more carefully. 

Difficulties arise in solving Eq. (7) in at least two ways. 
First, Eq. (7) must be solved by iteration because the 
unknown appears on the right-hand side. One takes the best 
guess for Eso,, plugs it into the right-hand side, forms the 
quantity in the brackets, vector decomposes it, and finally 
solves for a new Eso,. Adding to the confusion is the fact that 
EsDl may itself develop an irrotational part that must be 
removed before the next iteration. This procedure is, at best, 
messy and often converges very slowly. 

Second, and the major stumbling block for many applica- 
tions, the decomposition of j (the quantity in the bracket) 
requires the specification of physically obscure boundary 
conditions. As in the discussion leading to Eqs. ( 1 ), 

Jsol=j-Jim= CQ+PEAI +V+ (84 
V2$= -V.j= -V.[Q+pE,,,]. @b) 

To solve this Poisson equation, one needs to specify a 
boundary condition on all surfaces. The Neumann condi- 
tion physically corresponds to specifying the normal compo- 
nent of the irrotational part of j-which is certainly beyond 

the usual limits of our physical intuition. Fortunately 
symmetry conditions often allow boundary conditions on 
some boundaries to be Dirichlet-implying that the normal 
component or slope of the function is determined by the 
requirements of the governing equations. However, it is very 
easy to imagine situations, such as the injection of a particle 
beam of finite extent or an absorption process, for which 
only Neumann conditions give adequate control of the 
physics. The SDF procedure discussed in the next section 
eliminates the need for this decomposition of j and thus any 
further concern over these issues. 

1I.B. The SDF Formulation 

As discussed in the previous section, the SDF formulation 
eliminates the least intuitive of the required boundary 
conditions. The procedures needed to accomplish this were 
described by Hewett and Boyd [5] and we give here a brief 
summary. We begin with the following manipulations of 
Eq. (5): 

V*E,,, = 5 (.j -&,,) (9) 

V’E,,, + f jirr = ~ j. (10) 

Defining 

-V’(Vl)) =; jirr, (11) 

we have 

V*(E,,,-V$)=$j. (12) 

Comparing with Eq. (5), Eq. (12) contains a new term on 
the left-hand side that just compensates for the irrotational 
term that we have retained on the right. Defining 

we have 

5 = ho, - W, (13) 

V’E,=!Q c2 

Using Eq. (6b) we may further modify Eq. (14) as 

V’S = Q + PE,,, 

V’S-&=Q+@$. 

From the definition equation (13) we note that 

Gin = -vet 

(14) 
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so that 

v2*= -v.g. 

The equation for Es,,,, Eq. (5), then becomes the two 
coupled equations 

V25-~5=Q+dV (15) 
V’$= -v.t. (16) 

What is gained by this change? Most importantly, the 
required boundary conditions are simple. Since we only 
care about V$ on the boundaries rather than + itself, the 
boundary conditions for Eq. (16) can be Dirichlet zero. 
For Eq. (15) we use 

5 = E,,,(specilied) - V+ (17) 

or the normal derivative of this equation-no more difficult 
than that required for Eq. (5). Now we do have coupled 
equations over which we must iterate-but this is much 
easier than all the decomposition that is done to solve 
Eq. (7) the traditional way. Hewett and Boyd proved that 
this system works, and Boyd [S] has made this work on 
real problems in cylindrical geometry using a Picard 
iteration over the set of equations. What was missing 
was a quick, reliable procedure for solving these coupled 
equations. We present in Section III a new technique based 
on AD1 that satisfies these requirements. 

A recent paper by Weitzner and Lawson [9] addresses a 
related problem. They are concerned with how one selects 
Eso, (specified). Their solution determines the boundary 
condition by performing a global minimization of Eso, over 
the entire simulation region. The rationale is that the 
Darwin limit minimizes the amount of energy in purely 
inductive fields. We agree with this motivation though our 
intuition, based on the concept that Ei,, field lines end on 
charge while Esol must be closed loops, has not yet failed. 

Finally, we note that although we are working in the 
Coulomb gauge of the magnetic vector potential A, we have 
not needed to specify the gauge of the new vector 5. The final 
set of equations, Eqs. ( 15) and (16), do specify the gauge of 
5; Eq. (16) is the gauge condition equation. As with any 
gauge condition, the physics that determines Eso, is inde- 
pendent of gauge. Here the gauge of the equations is related 
in a complicated way to the irrotational part of Q and the 
gradient of p. 

III. SDF SOLUTION TECHNIQUES 

If the coupling between the two vector components of 5 
and scaler $ is relatively weak, p =+ V2, the obvious choice is 
Picard iteration-that is. using a guess for and solving for 

each component of 6 then using these latest values for 5 and 
solving (16) for $. This iteration is repeated in turn until 
both equations are satisfied. When p is not small compared 
to other terms in the equations or for cases in which p has 
strong gradients, this method converges slowly at best. We 
are interested in the physics for cases in which /* is not small 
relative to other terms. When p is significant we are com- 
pelled, by slow convergence, to find some method which will 
determine both components of 5 and $ simultaneously. 
Even using present day computers with large memory it is 
unreasonable to attempt to solve the full matrix that would 
result from straightforward finite differencing. All methods 
considered here make use of the banded nature of the 
matrix. 

In the course of this investigation, our objectives changed. 
At first we were interested in finding any banded-matrix 
method, regardless of speed or memory requirements, that 
would find a solution to the set of strongly coupled SDF 
equations. We considered the biconjugate gradient (BCG) 
method made popular by Z. Mikic and E. Morse [lo] and 
again by Anderson et al. [3]. Using the preconditioned 
biconjugate gradient solver CPDES2, developed by 
Anderson et al. [3], we readily obtained reliable, robust 
solutions. With solutions in hand, we next considered 
methods that might provide these solutions with much 
smaller CPU and memory requirements. Splitting or alter- 
nating direction implicit (ADI) methods offer reductions in 
memory requirements, though our first implementations 
were not very fast and certainly not robust. Later in the 
investigation, as we began to understand a version of AD1 
with dynamically determined acceleration factors called 
DADI, our method of choice shifted. As we will show, the 
DAD1 method, for similar accuracy, is significantly faster 
and always uses less storage in this application. We now 
give, in two subsections, (A) an intuitive discussion of 
DAD1 and (B) the details of the application of DAD1 as 
applied to our model problem. 

1II.A. An Intuitive View of the 
Dynamic AD1 Algorithm 

AD1 or splitting algorithms are most attractive because 
they turn large sparse matrix problems into simple banded 
matrix problems. Thus AD1 offers a considerable advantage 
over most other methods in reduced storage requirements. 
Other methods have claimed to have the advantage over 
ADI in CPU speed. Dynamic selection of the acceleration 
parameters, known here as DADI, in our recent experience, 
reduces and can reverse that advantage in situations with 
nonsymmetric operators. Our method does not depend on 
a “carefully” chosen preconditioner. We have not used any 
preconditioning in this work-though we may find 
increases in speed and such a techniques easily lit into the 
DAD1 scheme. An unattractive feature of AD1 has been 
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care that must be taken in implementation to achieve a 
splitting scheme that converges, and converges to the 
desired solution. We now outline some of the techniques 
and guiding “rules-of-thumb” that have proven useful in 
implementing DADI. 

III.A.l. DADI Applied to the Poisson Equation 

Consider a simple Poisson equation such as Eq. (lb). 
Many types of iterative methods can be considered, concep- 
tually at least, as the addition of a fictitious time derivative 
operator 

that is then finite-differenced and stepped forward to the 
time-asymptotic state. We have replaced the right-hand side 
with an arbitrary source term cr for this discussion. If our 
iteration can deliver us to this asymptotic state, then the 
fictitious time derivative will vanish, the “iteration” is said 
to have converged, and we have the desired solution. AD1 
is simply a mechanism for time integration that attempts 
to achieve the asymptotic limit with an operator splitting 
procedure that exploits the banded matrix properties of 
the elliptic operator. The finite-differenced representation is 

(-w+H)lj”+‘~2=(--W-v)l)n+cJ (19a) 

(-~+V)I,V’+‘=(-~-H)I,F’+“~+O, (19b) 

where the superscript n is the iteration counter, o =2/A& 
where At is the “time” step, and H and V represent the 
horizontal and vertical parts of the finite-differenced V2 
operator, 

H$ = ($(i+ 1,j) -2$(i,j) 

+ $(i- l,j))/Ax’ 

V$=(+(i,j+ l)-Z$(i,j) 

+ $(i,j- 1 ))/AY’, 

Wa) 

(2Ob) 

in this simple case. Conceptually, these ideas apply to more 
complex operators and in higher dimensions as well, though 
some of the strong convergence properties of AD1 may be 
reduced. AD1 gives some implicitness so that “large” time 
steps may be taken with some degree of robustness. A 
crucial part of this intuitive picture is the selection of the 
fictitious time step. 

If we define 

w “+a- =$“+.-$fl (21) 

then Eqs. (19) become 

(-o+H)6$“+1’2=(-H-V)+“+o Wa) 

(-co+ v)slp+l= -2co6$“+“2. (22b) 

With this formulation it is trivial to see that, if the iteration 
converges so that &,G”’ ’ = S$n + ‘I2 = 0, we have a solution 
of the finite difference version of our equation. The right- 
hand side of Eq. (22a) is in fact the definition of the residual 
at level n. 

If we further define the error after the nth iteration as 

and if H and V commute then we have 

$+I= 
(a+hj)(W+uj) n 

(-o+hj)(-o+vj)eJ’ (23) 

where hi and vj are jth eigenvalues of the H and V operator 
matrices and e, is the projection of the error on the jth eigen- 
function. Since we know that o > 0 and both H and V are 
negative definite, both h, and vi are negative numbers and 
thus the coefficient of ey will be less than 1 for all j and 
convergence is assured. 

The final concern is the rate of convergence. The power of 
AD1 is that, in principle, one may choose o so that the 
eigenmode projection of the next error en+ ’ may be made 
arbitrarily small. What remains is to define a scheme to 
optimally select o as we progress towards the asymptotic 
state (convergence). The traditional AD1 of Peaceman and 
Rachford [ 111 required estimates of the largest and smallest 
eigenvalues of the operator matrix. Their approach is to 
move the “acceleration” parameter w as a function of the 
iteration parameter n in a cyclic fashion between the eigen- 
value bounds. A more successful approach is that of Doss 
and Miller [ 121. They describe a dynamic selection method 
that uses a comparison between a “single” H and V 
sequence (denoted by HV) followed by a double sequence 
consisting of HV, HV passes with half the “time” step. The 
L2 norm of the difference between the result of the HV and 
HVHV sequences is compared to the L2 norm of the change 
between the result of the HVHV sequence and the solution 
at the start of the iteration step. The ratio between these two 
L2 norms, RATIO = difference/change, then determines a 
multiplicative factorf, used to change o for the next iteration. 

We give in Table I the scheme for modifying w as we use 
it. The idea is that the L2 norm of the difference gives a 
measure of the truncation error and the L2 norm of the 
change measures how much progress we are making 
towards the asymptotic state. The requirements conflict 
somewhat: if the difference norm in the numerator is large, 
the indication is that we are not resolving some time- 
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TABLE I 

RATIO f m Comment 

<0.02 0.125 
0.05 0.250 
0.10 0.500 
0.30 1.250 
0.40 2.000 

> 0.60 256.0 

Increase Ar by 8 
Increase AI by 4 
Increase do by 2 
Decrease At by 4/5 
Decrease AI by 2 
Dicard, restore 
previous level and 
decrease At by 256 

dependent behavior and we need to reduce the “time step” 
(increase 0); however, if the change norm in the 
denominator is small, the concern is that the effective time 
step is too small for anything to change. A final observation 
is that near convergence, both numerator and denominator 
become small-requiring that the norms be computed with 
high precision. The analysis of Doss and Miller [ 121 deter- 
mines an optimal range for RATIO to be the interval 
between 0.1 and 0.3. Finally, a most important feature is the 
provision for discarding an iterate completely should the 
ratio become larger than 0.6. 

Some of the behavior of DAD1 can be discerned in 
Table II, where some results for this simple symmetric 
Poisson’s equation are summarized. The first of the DAD1 
entries is the result of a solution with the initial o = 100.0. 
At completion of the solution o = 0.0477. The second 
DAD1 entry displays the result for DAD1 started with 
o = 0.0477. Evidently some effort is wasted finding the 
optimal range for o or At. The method does not require the 
operator matrix to be symmetric. For comparison we have 
given the results for a highly optimized ICCG algorithm 
that does take advantage of the symmetry-and requires 15 
scratch arrays compared to DADI’s four. Clearly, unless 
storage is an issue, one should use ICCG or perhaps cyclic 
reduction for this simple symmetric Poisson’s equation just 
as one should use FFTs for periodic problems. 

For more general problems AD1 provides advantages. 
We have used this same DAD1 algorithm successfully in 
several other configurations. Nonlinear situations with o(e) 
converge more slowly than the simple equation above but 
are now certainly competitive with ICCG which here must 
use Picard iteration. DAD1 enjoys the advantage that a($) 
may be updated as the iteration progresses. For reasons that 
will be discussed, AD1 works well in these cases provided r~ 

TABLE II 

Method Iterations 

DAD1 11 
DAD1 8 
ICCG 21 

Residual 

2.60x lo-” 
2.82 x lo-” 
7.41 x 1o-9 

CPU (seconds) 

0.370 
0.263 
0.039 

is recomputed only before the start of the H, V sequence and 
not updated in the middle. For examples of this type, we 
have found solutions for a strongly nonlinear exponential 
source function 0 in our studies of the elongated lield- 
reversed configuration [ 131. This method also works well 
for situations that have strong cross derivatives in the 
equation for the charge correction step in the 
electromagnetic direct implicit PIC code AVANT1 [2]. 

III.A.2. Applying DADI to More General Scalar Eliptic 
Equations 

We next consider a slightly more complicated equation. 
Adding a linear term with a multiplicative coefficient ,u leads 
to the scalar Helmholtz equation. Adding this term to 
Eq. (18) gives 

-a* ~+v’*-p*=rJ. 

Again the method will be to finite-difference and integrate 
forward to the time-asymptotic state. The finite-differenced 
representation is 

( -CO+~--t) I).+~/~=( -co- V+$$“+o (25a) 

> ( 
tin+‘= -w--H+; 

> 
I,~“+“~+(T. (25b) 

The new term is called the Helmholtz term and the coef- 
ficient p may have arbitrary spatial dependence. 

As before, Eq. (25) can be written 

-w+H-i ~I,P+~~*=(--II--V+~))~+~ (26a) 
> 

> 
Ij*n+L 4w&y+‘12 Wb) 

with the same property that, if the iteration converges, we 
have the desired solution of the finite difference version of 
our equation. The expression for en+ ’ also has the addi- 
tional terms 

el+’ = (0-l + hj-/l/2)(0 + Uj-/L/2) 
(-o+hj-p/2)(-w+uj-p/2)eY (27) 

that allow the same possibilities for rapid convergence as 
before. 

One question that is frequently raised concerns the 
splitting of the p term in equal parts on the left and right 
sides of Eqs. (25). If all we are attempting to accomplish is 
to find the zero residual (or the time-asymptotic limit) state, 
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why not put all of the p contribution on the left to make the 
set of equations “more” implicit? The answer is discovered 
by performing the same analysis as before with this new 
system-leading to this new form for the S$ formulae, 

(-u+ v-p)sly+‘= -(2co+p)6lp+“2. (28b) 

Note that, as with Eqs. (22), if the iteration converges, it will 
produce the desired solution. The problem with this form 
can be seen with the further reduction to the n + 1 error 
formula that no longer enjoys the simple cancellation of 
binomial coeflicients unless H and p commute. The new 
form is 

~+,~(~+h~)(w+~~)e,“-(Hp-pH)e~+~‘~ (29) 
e, - (-w+h,-p)(-w+u,-p) . 

It is easy to cast this problem into a more symmetric form 
that requires V and p to commute but the point is the same: 
in the course of iteration, $ may evolve into a spatial con- 
figuration such that an error introduced by the first pass is 
the only error fixed in the second pass. 

This interplay is apparent from the n + 4 level error term 
that does not cancel. The result is, especially for nonlinear 
equations, convergence to a residual value that cannot be 
made smaller by further iteration. The iteration has con- 
verged to a fixed point oscillation wherein the H and V 
passes just undo the changes made by each other. Often the 
value of the residual at which this oscillation begins is 
smaller than the error criterion and the user is never aware 
of the difficulty-adding to the frustration when it is 
noticeable. Further confusion can result from the fact that, 
until the oscillation is noticeable, the scheme with p entirely 
on the implicit side often converges in fewer iterations. The 
conservative cure is to split the Helmholtz term as in the 
preceding discussion. 

This analysis can be generalized to understand similar 
results that sometimes appear when first-order derivatives 

(30) 

are included. Using the additional notation for these first- 
order terms, 

4$(&j) = ($(i+ l,i)- $(i- 1, j))/(2dx) (31a) 

D.,$(i,j)= ($(kj+ I)-$(i, j- l))lWy), (31b) 

one might think that a direct extension of Eq. (23), the error 
expression for the scheme in Eqs. (19a) and (19b), would be 

appropriate. Denoting with d, and d, the “eigenvalues” of 
D, and D,, respectively, we obtain 

e9+’ = (o+h,-d.~)(O+uj-d,) n 
(-w+hj-d.~)(-w+“,-d.,)e” 

(32) 

Since d, and d, are purely imaginary, it would follow from 
Eq. (32) that lie:+ ‘/eJ < 1. However, the catch here is that 
Eq. (32) cannot hold since (H + D,) does not commute with 
( I’+ DY) and, therefore, the analysis is not valid. Indeed we 
saw empirically that convergence was unpredictable. 

A better option is to evaluate these first-order derivatives 
only at the start of the double sweeps. The resulting error 
expression is 

ey+‘= (0 + hj)(m + 0,) - 2utd.x + d,) e,! 
(-o+h,)(-w+o,) ” (33) 

In general one cannot show that the magnitude of the 
coefficient in Eq. (33) is less than one. However, one 
observes that for both large and small o this condition is 
satisfied. For very small o (large dt), DAD1 reduces the low 
frequency error rapidly and then shifts to the large o limit 
and converges more slowly to the specified tolerance. In 
practice, DAD1 manages the choice of w well with this 
option; this is, in fact, the splitting choice we use in the next 
section. 

It is worth noting that this analysis gives some clues to the 
proper handling of nonlinear terms. It is frequently possible 
to subtract the linear part of nonlinear terms from both 
sides of the equation. The new contribution on the left is 
evaluated at the advanced time and its contribution is 
frequently split as in the analysis leading to Eq. (27) rather 
than that leading to Eq. (29). The remaining part of the 
nonlinear term stays on the right-hand side and is updated 
only at the end of a full double sweep. Our choices in this 
matter are influenced by analysis similar to that leading to 
Eq. (33) rather than Eq. (32). As is certainly obvious by 
now, there are no hard rules to handle nonlinearities with 
AD1 and certain amount of testing is warranted. 

1II.B. Application of DADI to the Coupled 
Equations of Section II 

We now discuss the application of this DAD1 algorithm 
to the coupled set of equations, Eqs. (15) and (16), for the 
inductive electric field in the SDF formulation. As we have 
discussed, when the coupling between these equations is 
strong, we need to solve these equations simultaneously. 

Our notation describing the application to the two- 
dimensional SDF equations requires the definitions in 
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Eqs. (20) and (3 1). Using these definitions we split the converge to the desired solution. The expression for the 
system of three coupled scalar equations as n + 1 errors are 

H-PASS 

(-~o+H-p/2)<;+“~ 

=(--o- ~+d~)i”~+~~,$“+Qx 

(-co+ H-p/2) (;+“2 (344 

=(-o-V+~/2)5~+~D,~“+Q, 
(-,+,)$“+‘/‘= (-co-V)II/“-D,<:-DJ; 

V-PASS 

(-u+ V-p/2) 5;” 

=(-~-H+~/~)~~+“*+,uD,I,~~+Q~ 

(-co+ v-p/2)5;+’ 

=(-w-H+p/2)~;+1’2+pD,~“+Q, 
Wb) 

As in simple AD1 an iterated solution is obtained by 
solving the equations in the horizontal (H) pass, using the 
latest values for the second-order unknowns on the right 
side, followed by the vertical (V) pass, that uses the results 
from the previous H pass and so on, until convergence. 
Defining a vector E of ordered unknowns, 

E= (i”,(l), 5,(l), ‘Ml), 5,(2), 5,(2), $(2), t;,(3), . ..I. 

the three equations under each H or V pass are solved 
simultaneously by a banded linear matrix solver 

where # and 9’” are banded matrices obtained from the left- 
hand side of Eqs. (34a) and (34b), respectively, using an 
ordering consistent with definition of E. Convergence, for 
tests presented here, is defined to occur when both the L2 
norm of the normalized change, I/En+ ’ - Zn 11/11E,, 11, and the 
L2 norm of the residual Ilresil/llQll, are less then a given 
error criterion. 

Only one acceleration parameter was used for all three 
equations though each o could be “preconditioned” by nor- 
malizing it to the diagonal coefficient in each equation at 
each point. All first-order derivative terms were placed on 
the right-hand side and updated only at the start of each 
iteration. An analysis similar to that used to obtain Eqs. (27) 
and (33) reveals when terms can be updated and still 

e::‘= 
(W + hx,j- p/2)(0 + V,,j-p/2) ez,j- 2wpdxe”,,i 

(-o+h,.j-~/2)(-o+V,.j-~/2) 

eH+l = (o+h,j-~/2)(u+Vy,j-1~/2)e~,j-2u~d,eZ,i 
I’. .I (-u+h,,j-~/2)(-o+u,,j-~/2) 

e 
n +, _ (0 + h$,j)(u + Ue,j) e;,, + 2w,udxe:,j + 2copdyeG,i 
i.i - (-w+h,J(--o+v,,,) 

(35) 

Note that we have split the ,ug term just as we did for & in 
the scalar Helmholtz equation, Eq. (24). The first-order 
term pD$ is treated as we did for Eq. (30). 

A rule of thumb is that terms should be computed 
implicitly on the left before that term is updated on the right. 
For example, convergence will degrade and perhaps simply 
oscillate at a residual level above our convergence criteria if 
one uses a n + i value computed in the H pass in the first- 
order terms on the right-hand side of the V pass equations. 

Another variant that provides better symmetry between 
H and V passes than Eqs. (34) is 

H-PASS 

V-PASS 

(-co+ v-p/2)5:+’ 

=(-cLI-H++/~)~~+“~+Q~+~D~~~+“~ 

(-co+ v-p/2)5;+’ 

=(-u-H++/~)~;+“~+Q~~+~D~$~ (36b) 

(-co+ V)ly” 

=(-o-H)II/“f’f2-DD,5:f’J2-D,~5~ 

that does provide increased performance for small p. It does 
complicate the algorithm somewhat and does require the 
storage of <, and $ at the half iteration level. This variant 
is compared in the results section. 

This symmetric version offers another possibility for the 
first-order terms. We explored the effect of making the first- 
order terms implicit on the appropriate pass; for example, in 
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the H pass on the equation for [“,’ ‘I* we could easily change reader may guess, we feel this method already has enough 
the term pD,t,V~"* to pDxt+!P"2, thus making the itera- degrees of freedom and, as we show in the next section, the 
tion more implicit. This possibility gives a pentadiagonal results using the tridiagonal DAD1 method are already 
rather than a tridiagonal system. Though this arrangement quite attractive. 
may ultimately prove to give the smallest CPU time to con- 
vergence, there are several obstacles in its implementation. 
A minor consideration is the additional storage; we need to IV. TESTS AND COMPARISONS 
store live diagonals rather than three, each of which is 
3 x N, x N,. A clue to the most crucial issue is the fact that 
we need to store the entire diagonal. It is necessary to store 1V.A. The Test Problem 

these elements because banded matrix solutions are To test the DAD1 method on a realistic problem relevant 
inherently recursive. The whole matrix solution can be to our proposed Darwin application, we have contrived a 
vectorized only by making the innermost DO loops over test by specifying the answer Eo,,, and then “deriving” the 
the other direction-and vectorization is imperative for source function Q to be used in Eq. (15tas in Ref. [S]. We 
unitasking speed. Though a scalar pentadiagonal method then evaluate our solution procedures as they regenerate 
can easily be modified for this type of vectorization, we have this solution. In this test case, we work on a Cartesian mesh 
no a priori evidence that it will converge faster; it will take with 39 x 3 1 mesh points in the x and y directions. The mesh 
longer per iteration and it will take more storage. As the spacing is uniform with dx = 0.526 and dy = 0.667. To 

b 
20 0 

FIG. 1. These plots show graphically the functional forms used for the test case. (a) shows the initial choice of the E field; (b) shows the potential I$, 
from which we derive the irrotational part of the initial E field in (a). (c) is a vector representation of the solenoidal part E,, of the original E,,--obtained 
by subtracting the irrotational part from the original. This vector field E 
in this test case is shown in (d). 

a s0, serves as the desired solution. The coupling function fl with p,, = 1 .O used 
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minimize boundary condition difficulties we use periodic 
boundary conditions in y. 

For the tests considered here, we have chosen the desired 
answer as the solenoidal part of 

E = exp( -(x - ~)~/5)($, -e.“) cos(71)1/10). 

The solenoidal field itself is obtained by decomposition 
using the procedure given in Eqs. (1). Shown in Fig. 1 are 
graphical representations of this process. In Fig. la we have 
a vector plot of the total E field followed, in Fig. lb, by a 
contour plot of the potential function that is consistent with 
the irrotational part of the total field. In Fig. lc is a vector 
plot of the solenoidal field Eso, that is the “answer”- 
here denoted as E, S0,. Using this field we can construct, 
using finite differencing, V2E,,, that, using Eq. (5), 
determines jsol. 

The next step is to determine a value for Q. If we take the 
form of jFO, that we have just constructed as the source term 

inverse of A. Thus M is approximately a unit matrix with 
condition number N 1. By specifying a small number of 
parameters, the routine will automatically generate the 
required sparsity patterns and coupling stencils; making the 
task of setting up the coefficient matrix A straightforward. 

It is necessary to dimension the number of non-trivial 
diagonals to the maximum number possible for the most 
general coupling allowed by the 5- or 9-point operator 
stencil. In our case there were 19 non-zero diagonals; 
however, we were using a 5-point operator stencil and 
it turned out that the required number of non-trivial 
diagonals was 31. Because each diagonal represents three 
full 2D arrays, this extra storage is of concern when using 
machines with small memory or unfavorable memory 
charging algorithms. Our application of CPDES2 required 
the storage of 72 x 3 full 2D arrays-though at least 24 of 
these arrays remain unused by this application. 

1V.C. Results 
j, then we can construct the Q array using Eq. (6b) as soon 
as we specify p. The physics of the model tells us that p will In Table III we summarize the results of our studies 

be related to the plasma density and thus positive definite: carried out on the E machine at NERSC, a Cray XMP, 

we choose the form using the standard CFT compiler. We give, for BCG and 
two variants of DAD1 applied to our test problem, the 

p(i,j) = pJx(i)/20 + 1 - sin(nv(j)/5)). number of iterations iter, the largest residual res of any 
equation across the entire mesh, the largest difference dif 

A contour of this form is given in Fig. Id. We now have all 
the source-related arrays needed for the solution of 
Eqs. (15) and (16) initialized. The test is to see how well the 
solution of Eqs. (15) and (16) followed by (17) agrees with Method 

the original E, s0,. 
DADI 

TABLE III 

Iter Res 

0 13 1.21 x 1om4 5.43 x lo-* 
0 13 1.21 x 1o-4 5.43 x 1om2 
0 42 7.63 x 1O-4 5.43 x 1o-2 

1 55 5.06 x 10m4 3.23 x lo-* 
1 40 8.83 x lo-“ 3.23 x 10m2 
1 162 5.79 x 1o-4 3.22 x 10m2 

10 266 6.27 x 10m4 1.26 x 10m2 
10 55 5.89 x 10m4 1.38 x 10m2 
10 420 1.98 x 10m4 1.15 x 1om2 

100 20 3.76 x 10-j 8.22 x 10m3 
100 38 2.90 x 10m4 3.56 x 10m3 
100 665 5.38 x 1O-4 3.58 x 10m2 

1,000 7 1.07 x 1om4 2.10 x 1om3 
1,000 18 3.26 x 1O-4 9.52 x 10 -4 
l,C@O 754 9.94 x 1om4 2.37 x lo-’ 

2,000 7 6.39 x 10m5 9.17 x 1om4 
2,000 16 3.00 x 1om4 5.40 x 1o-4 
2,~ 758 8.60 x 1o-4 1.86 x 1o-3 

10,000 8 1.86 x 10-j 1.99 x 1o-4 
10,ooo 12 3.44 x 1o-4 3.56 x 1O-4 
10,000 875 8.44 x 1O-4 2.04 x lo-’ 

1V.B. The Preconditioned Biconjugate 
Gradient BCG Method 

The biconjugate gradient method [3], a generalization of 
the conjugate gradient method, is an iterative method that 
solves the nonsymmetric matrix equation Ax = b. The con- 
vergence rate depends upon the condition number of A and 
the extent to which the eigenvalues of A are “clustered.” A 
large condition number will yield poor convergence. If the 
eigenvalues are closely grouped the condition number will 
be small and rapid convergence will result. The BCG 
method does not possess a minimization property as does 
CG; thus, a monotonic decrease of error is not guaranteed 
and the possibility of breakdown exists. However, for most 
cases BCG yields faster convergence than applying CG to 
the normal (squared matrix) equations. 

The preconditioning used in the CPDES2 package is 
incomplete LU factorization, a less elaborate procedure 
than that required for the CG method. Preconditioning 
transforms the equation Ax = b into My = c, such that the 
eigenvalues of M are more clustered than those of A. For 
ILU preconditioning, M = BA, where B is an approximate 

DADI’ 
BCG 

DAD1 
DADI’ 
BCG 

DAD1 
DADI’ 
BCG 

DADI 
DADI’ 
BCG 

DADI 
DADI’ 
BCG 

DADI 
DADI’ 
BCG 

DADI 
DADI’ 
BCG 

Dif CPU 

0.486 
0.485 
5.20 

2.14 
1.64 

18.2 

10.4 
2.28 

46.0 

0.756 
1.46 

72.3 

0.245 
0.679 

81.9 

0.246 
0.601 

82.2 

0.288 
0.438 

94.8 
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between the “correct” answer and the rederived answer, 
dif = 1 E, so, - Eso, 1, and the CPU time in seconds required 
by each solution. We have used a modest residual criterion 
E,,, = 1 x 10-3, consistent with the expected Darwin model 
application and our finite-difference truncation error. 

For the current test case, we find DADI, as embodied in 
Eqs. (34) to be significantly faster than BCG. In addition to 
the speed, the storage required by DAD1 is only 7 x 3 (one 
for each unknown) full 2D arrays, counting the unknown 
itself. The algorithm we used for BCG requires at least 
72 x 3 full 2D arrays-though, as previously noted, at least 
24 of these arrays appear not to be needed. Storage 
requirements aside, however, it is clear that even the conser- 
vative DADI provides a significant CPU advantage over 
BCG in this application. 

The results obtained with DADI’, a variant of DAD1 with 
all the p terms on the left as in the three-equation analog of 
Eqs. (28), are also given. Despite the caveats concerning the 
possible oscillation of the residual using DADI’ discussed in 
the previous section for this variant, DADI’ works faster for 
small p,, by roughly a factor of two. Consistent with our pre- 
vious discussions, we still use this variant with caution and 
note that the original method DADI, that cannot exhibit 
this residual oscillation, is much superior for large PO-an 
advantage especially apparent for smaller error criterion. To 
restate, DAD1 always works. DAD1 is far superior for large 
pLo and only a factor of two slower for small pO, see Table IV. 
The factor of two advantage that DADI’ enjoys for small p0 
suggests that the expected residual oscillation occurs at 
residual values smaller than our E,,, criterion. Further, we 
may be able to take advantage of this situation with an 
adaptive implicit-explicit mix for the p term that depends 
on the local p value. 

Finally, we remark that for p0 = 10.0 and 100.0, a regime 
in which p and V* are roughly comparable for our mesh, the 
choice of DAD1 schemes may vary with E,,,, see Table V. 
Our truncation error is also evident in that the maximum 

TABLE IV 

Method 

E,s, = 1om5 

DAD1 
DADI’ 

DADI 
DADI’ 

E,,, = 1O-4 

DADI 
DADI’ 

DADI 
DADI’ 

PLO Iter Res Dif CPU 

1 151 8.42x 10m6 2.71 x 1om2 5.93 
1 90 8.85x lO-6 2.71 x 10-Z 3.78 

10 1135 6.67 x 10m6 1.65 x 10m2 44.6 
10 383 6.51x lO-6 1.65 x 1O-2 17.6 

1000 97 3.90x 1om5 3.84x 1O-3 3.15 

1000 550 8.57 x lO-5 7.91 x 1o-4 21.6 

2000 10 3.19 x 10-5 2.34 x 10m3 0.37 
2000 357 4.29x 1O-5 3.94x lo-4 14.4 

TABLE V 

Method E,,, Iter Res Dif CPU 

/lo= 10 

DADI 1om3 
DADI’ 1o-x 
BCG 10-’ 

DADI 1om4 
DADI’ 1om4 
BCG 1o-4 

pO=lOO 

DADI lo-3 
DADI’ lo-3 
BCG 10m3 

DADI 1om4 
DADI’ 1om4 
BCG 

266 
55 

420 

621 
231 
421 

20 

38 
665 

1044 
307 
685 

6.27 x 1O-4 
5.89 x 10m4 
1.98 x 1O-4 

7.24x 10m5 
5.05 x 1o-5 
7.87~10~~ 

3.76 x 10m5 
2.90 x 10m4 
5.38 x lo-“ 

1.26x lo-* 
1.38 x lo-* 
1.15 x torn2 

1.17 x lo-2 
1.18 x 10m2 
1.15 x 10-2 

8.22x 10m3 
3.56 x 10m3 
3.58 x lo-’ 

2.87 x lo-’ 
3.12 x lo-’ 
3.58x lo-’ 

10.4 
2.28 

46.0 

24.3 
10.6 

46.5 

0.756 
1.46 

72.3 

discrepancy 1 E, so, - Eso, 1 is nearly the same for E,,, = lO--3 
and 10m4. This behavior, consistently found for pLg < lo., 
suggests that more stringent error criteria provide only 
better solutions to the finite-difference equations; the 
physical solution does not change. 

Further, we note that the CPU time required to reach 
the smaller E,,, increases only for the two DAD1 ver- 
sions-suggesting that the major portion of the residual 
error is corrected early in the iteration. On the other 
hand, the CPU time for BCG remains almost the same- 
suggesting that the part of the error vector responsible for 
the large residual is not corrected by BCG until near the end 
of the iteration. If for some reason the iteration is stopped 
before the convergence criteria is met, it appears that the 
DAD1 answer will be more nearly correct. 

We stress again that we have made no effort to find an 
optimal preconditioner for either DAD1 or BCG. It is 
entirely possible, perhaps probable, that BCG can be made 
to converge more rapidly with a preconditioner motivated 
by physics intuition. It is also likely that DAD1 would 
respond favorable to such attention. 

We also find a hint that DADI’ can be improved by 
roughly another factor of two for the smaller values of p by 
the more symmetric form of splitting the first-order terms as 
given by Eqs. (36). For example, the symmetrized version 
of DADI’ converges in 181 iterations taking 8.27 s for 
E,,, = lO-4 and p0 = 100. The symmetrized version of 
DAD1 is also faster-taking 583 iterations in 26.6 s for the 
same case-though both symmetric and nonsymmetric 
forms of DAD1 are significantly slower than either form of 
DADI’ for these parameters. These symmetrized forms 
require another three full 2D storage arrays for the addi- 
tional “time” levels and are slightly more complex to code. 
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The symmetrized versions do not work better in all cases, 
however, and previous experience suggests that the sym- 
metric form may be less tolerant in strongly nonlinear 
problems. Now that we have demonstrated that a low cost 
solution of the SDF equations can be obtained with this 
method, we choose to leave the final optimization choices 
for specific applications to the user, where other issues such 
as geometric dependence and robustness may influence the 
choices. 

1V.D. Boundary Conditions 

Boundary conditions were chosen such that the original 
E OsO, could be recovered. The boundary conditions needed 
to accomplish this are not unique. For the typical p0 = 1.0 

case shown in Fig. 2 we have taken + = 0 at xmin and xmaX 
and have used conditions given by Eq. (17) for g so that the 
desired E, SOl is regenerated at the boundary; y-boundaries 
are periodic. Shown in Figs. 2a and b are a vector plot of 5 
and a contour plot of $. Shown in Fig. 2c is a vector plot of 
the difference between the original EO,,, and the new one 
that has just been computed by DADI. The number given 
on the figure is the magnitude of the largest difference. This 
value is consistent with the truncation error of our 5-point 
V2 operators. 

The choice of II/ = 0 guarantees that V$ will be zero for 
the y component of 5 on the boundary. Another equally 
acceptable choice that generates the same physical solution 
is the Neumann condition V$ = 0 in the x-direction. In this 
case V$ # 0 in the y-direction and results in significantly dif- 
ferent representations for both 5 and $. Shown in Fig. 3 are 

b v 

- --z=ee--c--/~-~~ 

: A----.--- 

FIG. 2. In (a) we show a vector plot of 6 and (b) the corresponding scalar + that results from our solution with /~a = 1.0. This is the solution for 
the case with Dirichlet boundary conditions at x,,,~” and x,,, and periodic boundary conditions in the y direction. In (c) we show the vector difference 
between the derived E,,, , using (a) and (b) from this figure, and the original E. S0l from Fig. lc. Note that the magnitude of the largest difference, shown 
in the inset, is two orders of magnitude smaller than the magnitude of the solution and is consistent with the truncation error of the finite difference 
approximation. 
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Longest “ec,Or = 1.22 

4 

b ul 

1 20.0 

FIG. 3. Again we show a vector plot of (a) 5 and the corresponding scalar (b) II/ that result with I,, = 1.0. In this case the solution Eso, is the same 
as in Fig. 2, to within truncation errors, but 5 and $ look much different because of the selection of Neumann zero boundary conditions at x,,,. We 
have maintained Dirichlet conditions at .x,,,.~ and periodic boundary conditions in they directions. (c) shows the vector difference between this solution 
E,,, , using (a) and (b) from this figure, and the original E,, s0, in Fig. lc. 

the plots corresponding to those in Fig. 2 that have this 
Neumann condition applied only to the X,in boundary. 
Comparing the solutions for 4 and II/ with the Dirichlet con- 
ditions in Fig. 2 with these solutions reveals quite different 
spatial dependence but, as evident by the small maximum 
vector difference, the original solution is recovered. 

V. SUMMARY 

While more work remains to be done in the area of 
finding optimal splitting choices for these and other 
equations as functions of their parameters, we feel that our 
results to date display exciting possibilities for dynamic AD1 
solution of strongly coupled equations. We believe that we 
may now achieve the advantages inherent in the SDF model 

without squandering the CPU gains on solution methods 
not well suited to the SDF model. 

ACKNOWLEDGMENTS 

We thank Dr. D. V. Anderson for numerous discussions and help with 
the ILUBCG algorithm. We acknowledge very useful discussions with 
Dr. R. Galinas in the development of this generalization of DADI. 
We also thank Dr. Jack Byers for a critical reading of the manuscript. 
Work performed under the auspices of the U.S. Department of Energy 
by the Lawrence Livermore National Laboratory under Contract 
W-7405-ENG-48. 

REFERENCES 

1. See, for example, D. W. Hewett, J. Compuf. Phys. 38, 378 (1980); 
E. J. Horowitz, D. E. Shumaker, and D. V. Anderson, J. Compur. 
Phys. 84,279 (1989); D. S. Harned, J. Comput. Phys. 47,452 (1982). 



24 HEWETT, LARSON, AND DOSS 

2. D. W. Hewett and A. B. Langdon, J. Comput. Phys. 72, 121 (1987). 

3. D. V. Anderson, A. E. Koniges, and D. E. Shumaker, Comput. Phys. 
Commun. 51, 391 (1988). 

4. D. W. Hewett and C. W. Nielson, J. Comput. Phys. 29,219 (1978). 

5. D. W. Hewett and J. K. Boyd, J. Compur. Phys. 70, 166 (1987). 

6. C. W. Nielson and H. R. Lewis, in Methods Comput. Phys., Vol. 16, 
p. 367 edited by B. Alder, S. Fernbach, M. Rotenberg, and J. Killeen 
(Academic Press, New York, 1976). 

7. J. Busnardo-Neto, P. L. Pritchett, A. T. Lin, and J. M. Dawson, 
J. Comput. Phys. 23, 300 (1977). 

8. J. K. Boyd, Ci. J. Caporaso, and A. G. Cole, IEEE Trans. Nucl. Sci. 
Ns-32 (5), 2602 (1985). 

9. H. Weitzner and W. Lawson, Phys. Fluids BI 10, 1953 (1989). 

10. Z. Mikic and E. C. Morse, J. Compuf. Phys. 61, 154 (1985). 

11. D. W. Peaceman and H. H. Rachford, J. Sot. Indus. Appl. Math. 3,28 
(1955). 

12. S. Doss and K. Miller, SIAM J. Numer. .4nal. 16, 837 (1979). 

13. D. W. Hewett and R. L. Spencer, Phys. Fluids 26, 1299 (1983). 


