
JOURNAL OF COMPUTATIONAL PHYSICS 101, 1 l-24 (1992)

Solution of Simultaneous Partial Differential Equations
Using Dynamic ADI: Solution of the Streamlined

Darwin Field Equations

D. W. HEWETT, D. J. LARSON, AND S. Doss

University of California, Lawrence Livermore National Laboratory, Livermore, California 94550

Received October 1, 1990; revised July 15, 1991

We apply a particular version of ADI called Dynamic ADI (DADI) to
the strongly coupled Znd-order partial differential equations that arise
from the streamlined Darwin field (SDF) equations. The DADI method
is applied in a form that we show is guaranteed to converge to the
desired solution of the finite difference equation. We give overviews of
our test case, the SDF problem, and the DADI method, with some
justification for our choice of operator splitting. Finally, we apply DADI
to the strongly coupled SDF equations and present the results from our
test case. Our implementation requires a factor of 7 less storage and has
proven to be a factor of 4 (in the worst case) to several orders of
magnitude faster than competing methods. 0 1992 Academwz Press. Inc.

I. INTRODUCTION

In computational physics one frequently encounters the
need to solve a strongly coupled set of partial differential
equations. Examples can readily be found [l-5] in solu-
tions of Maxwell’s equations and their various approxi-
mations needed in the simulation of plasma physics
phenomena. Our desire to model laboratory plasma
behavior is the source of our difficulties: if we were content
to study small time and spatial scales, the time honored
leapfrog integration of Maxwell’s equations provides an
excellent solution-though some issues regarding outflow
boundary conditions on oblique boundaries are trouble-
some. Inevitably, time or spatial scales are enlarged and the
bounds of affordable plasma simulation are encountered.
Fortunately many important macroscopic plasma studies
do not require the richness of the full electromagnetic
model. Implicit PIC methods would seem to provide relief
in these situations because large time steps allow unneeded
high-frequency physics to damp away. However, implicit
codes encounter similar bounds of affordability; though an
irrelevant timescale need not be resolved, inevitably some
computational machinery must be exercised just in case the
user chooses a small time step.

Much of computational plasma physics is addressed to

finding appropriate “reduced” models that trade increased
computational complexity for the complete neglect of
selected space and time scales. The increased complexity
usually shows up in model equations that include more and
stronger coupling to each other. As time steps increase it
becomes more difficult to freeze one variable while we
advance another. Implicit formulations of the model are the
answer, in principle, but the numerical solution must be
efficient enough to provide a reward for the increased com-
putational effort required. In our considerations of these
issues we have exploited an old method in a new way that
is proving useful for these strongly coupled equations.

Our particular motivation in the work reported here has
been to find an effective yet affordable method to apply in
simulation models employing the streamlined Darwin field
(SDF) equations [S]. The Darwin approximation of
Maxwell’s equations has been discussed by several authors;
the essence of the model is that the part of the displacement
current that gives rise to purely electromagnetic (EM)
oscillations is ignored. Dropping this term is equivalent to
ignoring the retardation that generates these modes. The
beneficial effects are that the restrictive Courant condition
on EM propagation need not be satisfied and that the
coupling of plasma source fluctuations in noisy PIC
representations does not lead to excessive energy loss to
purely EM modes.

A problem with the traditional Darwin approach is that
boundary conditions are required that are beyond the
usual limits of physical intuition. There are two levels of
difficulties. The most straightforward level comes from
our need to break up the E into its component solenoidal
(electromagnetic) and irrotational (electrostatic) parts-
introducing some ambiguity into the boundary conditions
needed for each part so that the sum represents the correct
physics. The other level is less obvious. At the heart of the
calculation for the solenoidal E field is an equation that
requires the solenoidal part of a plasma source term, the
time derivative of the total plasma current, that is itself

11 0021-9991/92 E5.00

Copyright 0 1992 by Academic Press, Inc.
All rights of reproduction in any form reserved.

12 HEWETT, LARSON, AND DOSS

derived from other plasma source terms and field quantities.
To decompose this source term properly requires boundary
conditions that are interrelated to several others in both
time and space. The complexity that results has severely
restricted the utility of the Darwin model-leading to the
usual trick of moving the plasma “far away” from all
boundaries. Unfortunately, for plasma “near” physical
boundaries such issues cannot be ignored.

The purpose of the SDF formulation is to provide an
alternative solution path for the Darwin model that obviates
the most troubling boundary conditions. The cost for bound-
ary condition relief is that the equations for the inductive
electric lieid become even more strongly coupled. The
purpose of this paper is to present an uncommon use of the
alternating direction implicit (ADI) technique that provides
a clean, straightforward solution, without iteration between
the several equations. The method works so well that we
expect there to be many other applications, though no
others will be presented here.

The plan of this paper is as follows: in Section II we
present an abbreviated derivation of the Darwin inductive
electric field equations and show how the SDF formulation
eliminates the least intuitive of the boundary conditions.
The SDF formulation is then followed to derive the coupled
equations for our test problem. Section III gives an intuitive
view of how the dynamic AD1 algorithm works and how we
have applied it to the coupled equations of Section II.
Finally in Section IV, we give our results and a brief
comparison with the BCG method applied to this same
problem.

II. THE INDUCTIVE E EQUATIONS IN THE
DARWIN APPROXIMATION

ILA. Motivation

Boundary conditions pose significant difficulties with the
traditional Darwin model for all but the trivial case where
all boundary conditions are assumed far from the plasma so
that boundary condition choices are insignificant. These dif-
ficulties arise at several points in the model but are nowhere
more acute than in the algorithm used to compute the
inductive electric field.

Before starting a discussion of the equations, a few delini-
tions are given. From Helmholtz’s theorem any vector may
be represented as the sum of solenoidal and irrotational
parts. The solenoidal part of a vector has no divergence and
could be obtained from the curl of a vector potential, and
the irrotational part has no curl and might come from the
gradient of a scalar potential. We can always find such
potentials though we may choose not to for convenience.
We use the subscript sol to refer to the solenoidal part and
the subscript irr to refer to the irrotational part. Vector

decomposition of a typical vector J is accomplished by
defining Jirr and JsO, with

where

V2$= -V.J.

(la)

Generally the boundaries are not far from the physics of
interest and therefore the choice of boundary conditions
is important. Unfortunately, boundary conditions that
properly represent the physics can easily become the hardest
part of the problem. Efforts to properly represent a plasma-
wall interaction generally use a Neumann condition on one
or more of the simulation boundaries. This condition has
the form

V normal ti = - Jirr . fi (lc)

which corresponds physically to the normal component of
the irrotational part of J.

The traditional Darwin model has been motivated and
discussed by several authors [4-83. The reader is directed to
the work of Nielson and Lewis [6] and the streamlined
version of Hewett and Boyd [S] as prerequisites for the
brief details and summary we give here. We start with the
Darwin limit of Maxwell’s equations in which the solenoidal
part of the displacement current has been discarded:

(2)

Introducing the solenoidal vector potential A, such that
B=VxAandV-A=O,wehave

V2A= -F JsOl,

and the equation for the electrostatic potential @ is the
usual

V2@ = -4np. (4)

Using E = -V@ - (l/c)A, we obtain the irrotational part
of the electric field from the gradient of 0. The equation for
Eso, comes from the time derivative of Eq. (3) with the
above definition of E, resulting in

V2E,,, = $ JsO,.

SOLVING PDE USING DYNAMIC ADI 13

As in Nielson and Lewis,

4n
2 J = K + 5 X B + ,U(Eirr + Esol). (64

We define Q such that

$J=Q+PL (6b)

so that Eq. (5) becomes

V*L = L-Q + PJLJ~~I. (7)

These equations comprise the Darwin limit of Maxwell’s
equations. They require boundary conditions that are, with
the notable exception of Eq. (7), physically motivated but
often strongly interrelated [S].

Equation (7) has proven difficult to solve+specially for
large I*. The limit of large p corresponds to an important
parameter regime for the Darwin model. The parameter p is
the sum over species of the square of the plasma frequencies
divided by the square of the speed of light-the inverse of
the square of the collisionless electromagnetic skin depth.
Comparing the scaling of the terms in Eq. (7), we see that
the ratio of the p term to the V2 term is a measure of spatial
resolution of the skin depth, with the small ~1 case corre-
sponding to good resolution. If forced to work with the
radiationless Darwin model only in the small p limit by
numerical solution difficulties, we will have lost a large part
of the advantage afforded by the Darwin model. Thus, we
examine the difficulties more carefully.

Difficulties arise in solving Eq. (7) in at least two ways.
First, Eq. (7) must be solved by iteration because the
unknown appears on the right-hand side. One takes the best
guess for Eso,, plugs it into the right-hand side, forms the
quantity in the brackets, vector decomposes it, and finally
solves for a new Eso,. Adding to the confusion is the fact that
EsDl may itself develop an irrotational part that must be
removed before the next iteration. This procedure is, at best,
messy and often converges very slowly.

Second, and the major stumbling block for many applica-
tions, the decomposition of j (the quantity in the bracket)
requires the specification of physically obscure boundary
conditions. As in the discussion leading to Eqs. (1),

Jsol=j-Jim= CQ+PEAI +V+ (84
V2$= -V.j= -V.[Q+pE,,,]. @b)

To solve this Poisson equation, one needs to specify a
boundary condition on all surfaces. The Neumann condi-
tion physically corresponds to specifying the normal compo-
nent of the irrotational part of j-which is certainly beyond

the usual limits of our physical intuition. Fortunately
symmetry conditions often allow boundary conditions on
some boundaries to be Dirichlet-implying that the normal
component or slope of the function is determined by the
requirements of the governing equations. However, it is very
easy to imagine situations, such as the injection of a particle
beam of finite extent or an absorption process, for which
only Neumann conditions give adequate control of the
physics. The SDF procedure discussed in the next section
eliminates the need for this decomposition of j and thus any
further concern over these issues.

1I.B. The SDF Formulation

As discussed in the previous section, the SDF formulation
eliminates the least intuitive of the required boundary
conditions. The procedures needed to accomplish this were
described by Hewett and Boyd [5] and we give here a brief
summary. We begin with the following manipulations of
Eq. (5):

V*E,,, = 5 (.j -&,,) (9)

V’E,,, + f jirr = ~ j. (10)

Defining

-V’(Vl)) =; jirr, (11)

we have

V*(E,,,-V$)=$j. (12)

Comparing with Eq. (5), Eq. (12) contains a new term on
the left-hand side that just compensates for the irrotational
term that we have retained on the right. Defining

we have

5 = ho, - W, (13)

V’E,=!Q c2

Using Eq. (6b) we may further modify Eq. (14) as

V’S = Q + PE,,,

V’S-&=Q+@$.

From the definition equation (13) we note that

Gin = -vet

(14)

14 HEWETT, LARSON, AND DOSS

so that

v2*= -v.g.

The equation for Es,,,, Eq. (5), then becomes the two
coupled equations

V25-~5=Q+dV (15)
V’$= -v.t. (16)

What is gained by this change? Most importantly, the
required boundary conditions are simple. Since we only
care about V$ on the boundaries rather than + itself, the
boundary conditions for Eq. (16) can be Dirichlet zero.
For Eq. (15) we use

5 = E,,,(specilied) - V+ (17)

or the normal derivative of this equation-no more difficult
than that required for Eq. (5). Now we do have coupled
equations over which we must iterate-but this is much
easier than all the decomposition that is done to solve
Eq. (7) the traditional way. Hewett and Boyd proved that
this system works, and Boyd [S] has made this work on
real problems in cylindrical geometry using a Picard
iteration over the set of equations. What was missing
was a quick, reliable procedure for solving these coupled
equations. We present in Section III a new technique based
on AD1 that satisfies these requirements.

A recent paper by Weitzner and Lawson [9] addresses a
related problem. They are concerned with how one selects
Eso, (specified). Their solution determines the boundary
condition by performing a global minimization of Eso, over
the entire simulation region. The rationale is that the
Darwin limit minimizes the amount of energy in purely
inductive fields. We agree with this motivation though our
intuition, based on the concept that Ei,, field lines end on
charge while Esol must be closed loops, has not yet failed.

Finally, we note that although we are working in the
Coulomb gauge of the magnetic vector potential A, we have
not needed to specify the gauge of the new vector 5. The final
set of equations, Eqs. (15) and (16), do specify the gauge of
5; Eq. (16) is the gauge condition equation. As with any
gauge condition, the physics that determines Eso, is inde-
pendent of gauge. Here the gauge of the equations is related
in a complicated way to the irrotational part of Q and the
gradient of p.

III. SDF SOLUTION TECHNIQUES

If the coupling between the two vector components of 5
and scaler $ is relatively weak, p =+ V2, the obvious choice is
Picard iteration-that is. using a guess for and solving for

each component of 6 then using these latest values for 5 and
solving (16) for $. This iteration is repeated in turn until
both equations are satisfied. When p is not small compared
to other terms in the equations or for cases in which p has
strong gradients, this method converges slowly at best. We
are interested in the physics for cases in which /* is not small
relative to other terms. When p is significant we are com-
pelled, by slow convergence, to find some method which will
determine both components of 5 and $ simultaneously.
Even using present day computers with large memory it is
unreasonable to attempt to solve the full matrix that would
result from straightforward finite differencing. All methods
considered here make use of the banded nature of the
matrix.

In the course of this investigation, our objectives changed.
At first we were interested in finding any banded-matrix
method, regardless of speed or memory requirements, that
would find a solution to the set of strongly coupled SDF
equations. We considered the biconjugate gradient (BCG)
method made popular by Z. Mikic and E. Morse [lo] and
again by Anderson et al. [3]. Using the preconditioned
biconjugate gradient solver CPDES2, developed by
Anderson et al. [3], we readily obtained reliable, robust
solutions. With solutions in hand, we next considered
methods that might provide these solutions with much
smaller CPU and memory requirements. Splitting or alter-
nating direction implicit (ADI) methods offer reductions in
memory requirements, though our first implementations
were not very fast and certainly not robust. Later in the
investigation, as we began to understand a version of AD1
with dynamically determined acceleration factors called
DADI, our method of choice shifted. As we will show, the
DAD1 method, for similar accuracy, is significantly faster
and always uses less storage in this application. We now
give, in two subsections, (A) an intuitive discussion of
DAD1 and (B) the details of the application of DAD1 as
applied to our model problem.

1II.A. An Intuitive View of the
Dynamic AD1 Algorithm

AD1 or splitting algorithms are most attractive because
they turn large sparse matrix problems into simple banded
matrix problems. Thus AD1 offers a considerable advantage
over most other methods in reduced storage requirements.
Other methods have claimed to have the advantage over
ADI in CPU speed. Dynamic selection of the acceleration
parameters, known here as DADI, in our recent experience,
reduces and can reverse that advantage in situations with
nonsymmetric operators. Our method does not depend on
a “carefully” chosen preconditioner. We have not used any
preconditioning in this work-though we may find
increases in speed and such a techniques easily lit into the
DAD1 scheme. An unattractive feature of AD1 has been

SOLVING PDE USING DYNAMIC ADI 15

care that must be taken in implementation to achieve a
splitting scheme that converges, and converges to the
desired solution. We now outline some of the techniques
and guiding “rules-of-thumb” that have proven useful in
implementing DADI.

III.A.l. DADI Applied to the Poisson Equation

Consider a simple Poisson equation such as Eq. (lb).
Many types of iterative methods can be considered, concep-
tually at least, as the addition of a fictitious time derivative
operator

that is then finite-differenced and stepped forward to the
time-asymptotic state. We have replaced the right-hand side
with an arbitrary source term cr for this discussion. If our
iteration can deliver us to this asymptotic state, then the
fictitious time derivative will vanish, the “iteration” is said
to have converged, and we have the desired solution. AD1
is simply a mechanism for time integration that attempts
to achieve the asymptotic limit with an operator splitting
procedure that exploits the banded matrix properties of
the elliptic operator. The finite-differenced representation is

(-w+H)lj”+‘~2=(--W-v)l)n+cJ (19a)

(-~+V)I,V’+‘=(-~-H)I,F’+“~+O, (19b)

where the superscript n is the iteration counter, o =2/A&
where At is the “time” step, and H and V represent the
horizontal and vertical parts of the finite-differenced V2
operator,

H$ = ($(i+ 1,j) -2$(i,j)

+ $(i- l,j))/Ax’

V$=(+(i,j+ l)-Z$(i,j)

+ $(i,j- 1))/AY’,

Wa)

(2Ob)

in this simple case. Conceptually, these ideas apply to more
complex operators and in higher dimensions as well, though
some of the strong convergence properties of AD1 may be
reduced. AD1 gives some implicitness so that “large” time
steps may be taken with some degree of robustness. A
crucial part of this intuitive picture is the selection of the
fictitious time step.

If we define

w “+a- =$“+.-$fl (21)

then Eqs. (19) become

(-o+H)6$“+1’2=(-H-V)+“+o Wa)

(-co+ v)slp+l= -2co6$“+“2. (22b)

With this formulation it is trivial to see that, if the iteration
converges so that &,G”’ ’ = S$n + ‘I2 = 0, we have a solution
of the finite difference version of our equation. The right-
hand side of Eq. (22a) is in fact the definition of the residual
at level n.

If we further define the error after the nth iteration as

and if H and V commute then we have

$+I=
(a+hj)(W+uj) n

(-o+hj)(-o+vj)eJ’ (23)

where hi and vj are jth eigenvalues of the H and V operator
matrices and e, is the projection of the error on the jth eigen-
function. Since we know that o > 0 and both H and V are
negative definite, both h, and vi are negative numbers and
thus the coefficient of ey will be less than 1 for all j and
convergence is assured.

The final concern is the rate of convergence. The power of
AD1 is that, in principle, one may choose o so that the
eigenmode projection of the next error en+ ’ may be made
arbitrarily small. What remains is to define a scheme to
optimally select o as we progress towards the asymptotic
state (convergence). The traditional AD1 of Peaceman and
Rachford [111 required estimates of the largest and smallest
eigenvalues of the operator matrix. Their approach is to
move the “acceleration” parameter w as a function of the
iteration parameter n in a cyclic fashion between the eigen-
value bounds. A more successful approach is that of Doss
and Miller [121. They describe a dynamic selection method
that uses a comparison between a “single” H and V
sequence (denoted by HV) followed by a double sequence
consisting of HV, HV passes with half the “time” step. The
L2 norm of the difference between the result of the HV and
HVHV sequences is compared to the L2 norm of the change
between the result of the HVHV sequence and the solution
at the start of the iteration step. The ratio between these two
L2 norms, RATIO = difference/change, then determines a
multiplicative factorf, used to change o for the next iteration.

We give in Table I the scheme for modifying w as we use
it. The idea is that the L2 norm of the difference gives a
measure of the truncation error and the L2 norm of the
change measures how much progress we are making
towards the asymptotic state. The requirements conflict
somewhat: if the difference norm in the numerator is large,
the indication is that we are not resolving some time-

16 HEWETT, LARSON, AND DOSS

TABLE I

RATIO f m Comment

<0.02 0.125
0.05 0.250
0.10 0.500
0.30 1.250
0.40 2.000

> 0.60 256.0

Increase Ar by 8
Increase AI by 4
Increase do by 2
Decrease At by 4/5
Decrease AI by 2
Dicard, restore
previous level and
decrease At by 256

dependent behavior and we need to reduce the “time step”
(increase 0); however, if the change norm in the
denominator is small, the concern is that the effective time
step is too small for anything to change. A final observation
is that near convergence, both numerator and denominator
become small-requiring that the norms be computed with
high precision. The analysis of Doss and Miller [121 deter-
mines an optimal range for RATIO to be the interval
between 0.1 and 0.3. Finally, a most important feature is the
provision for discarding an iterate completely should the
ratio become larger than 0.6.

Some of the behavior of DAD1 can be discerned in
Table II, where some results for this simple symmetric
Poisson’s equation are summarized. The first of the DAD1
entries is the result of a solution with the initial o = 100.0.
At completion of the solution o = 0.0477. The second
DAD1 entry displays the result for DAD1 started with
o = 0.0477. Evidently some effort is wasted finding the
optimal range for o or At. The method does not require the
operator matrix to be symmetric. For comparison we have
given the results for a highly optimized ICCG algorithm
that does take advantage of the symmetry-and requires 15
scratch arrays compared to DADI’s four. Clearly, unless
storage is an issue, one should use ICCG or perhaps cyclic
reduction for this simple symmetric Poisson’s equation just
as one should use FFTs for periodic problems.

For more general problems AD1 provides advantages.
We have used this same DAD1 algorithm successfully in
several other configurations. Nonlinear situations with o(e)
converge more slowly than the simple equation above but
are now certainly competitive with ICCG which here must
use Picard iteration. DAD1 enjoys the advantage that a($)
may be updated as the iteration progresses. For reasons that
will be discussed, AD1 works well in these cases provided r~

TABLE II

Method Iterations

DAD1 11
DAD1 8
ICCG 21

Residual

2.60x lo-”
2.82 x lo-”
7.41 x 1o-9

CPU (seconds)

0.370
0.263
0.039

is recomputed only before the start of the H, V sequence and
not updated in the middle. For examples of this type, we
have found solutions for a strongly nonlinear exponential
source function 0 in our studies of the elongated lield-
reversed configuration [131. This method also works well
for situations that have strong cross derivatives in the
equation for the charge correction step in the
electromagnetic direct implicit PIC code AVANT1 [2].

III.A.2. Applying DADI to More General Scalar Eliptic
Equations

We next consider a slightly more complicated equation.
Adding a linear term with a multiplicative coefficient ,u leads
to the scalar Helmholtz equation. Adding this term to
Eq. (18) gives

-a* ~+v’*-p*=rJ.

Again the method will be to finite-difference and integrate
forward to the time-asymptotic state. The finite-differenced
representation is

(-CO+~--t) I).+~/~=(-co- V+$$“+o (25a)

> (
tin+‘= -w--H+;

>
I,~“+“~+(T. (25b)

The new term is called the Helmholtz term and the coef-
ficient p may have arbitrary spatial dependence.

As before, Eq. (25) can be written

-w+H-i ~I,P+~~*=(--II--V+~))~+~ (26a)
>

>
Ij*n+L 4w&y+‘12 Wb)

with the same property that, if the iteration converges, we
have the desired solution of the finite difference version of
our equation. The expression for en+ ’ also has the addi-
tional terms

el+’ = (0-l + hj-/l/2)(0 + Uj-/L/2)
(-o+hj-p/2)(-w+uj-p/2)eY (27)

that allow the same possibilities for rapid convergence as
before.

One question that is frequently raised concerns the
splitting of the p term in equal parts on the left and right
sides of Eqs. (25). If all we are attempting to accomplish is
to find the zero residual (or the time-asymptotic limit) state,

SOLVING PDE USING DYNAMIC ADI 17

why not put all of the p contribution on the left to make the
set of equations “more” implicit? The answer is discovered
by performing the same analysis as before with this new
system-leading to this new form for the S$ formulae,

(-u+ v-p)sly+‘= -(2co+p)6lp+“2. (28b)

Note that, as with Eqs. (22), if the iteration converges, it will
produce the desired solution. The problem with this form
can be seen with the further reduction to the n + 1 error
formula that no longer enjoys the simple cancellation of
binomial coeflicients unless H and p commute. The new
form is

~+,~(~+h~)(w+~~)e,“-(Hp-pH)e~+~‘~ (29)
e, - (-w+h,-p)(-w+u,-p) .

It is easy to cast this problem into a more symmetric form
that requires V and p to commute but the point is the same:
in the course of iteration, $ may evolve into a spatial con-
figuration such that an error introduced by the first pass is
the only error fixed in the second pass.

This interplay is apparent from the n + 4 level error term
that does not cancel. The result is, especially for nonlinear
equations, convergence to a residual value that cannot be
made smaller by further iteration. The iteration has con-
verged to a fixed point oscillation wherein the H and V
passes just undo the changes made by each other. Often the
value of the residual at which this oscillation begins is
smaller than the error criterion and the user is never aware
of the difficulty-adding to the frustration when it is
noticeable. Further confusion can result from the fact that,
until the oscillation is noticeable, the scheme with p entirely
on the implicit side often converges in fewer iterations. The
conservative cure is to split the Helmholtz term as in the
preceding discussion.

This analysis can be generalized to understand similar
results that sometimes appear when first-order derivatives

(30)

are included. Using the additional notation for these first-
order terms,

4$(&j) = ($(i+ l,i)- $(i- 1, j))/(2dx) (31a)

D.,$(i,j)= ($(kj+ I)-$(i, j- l))lWy), (31b)

one might think that a direct extension of Eq. (23), the error
expression for the scheme in Eqs. (19a) and (19b), would be

appropriate. Denoting with d, and d, the “eigenvalues” of
D, and D,, respectively, we obtain

e9+’ = (o+h,-d.~)(O+uj-d,) n
(-w+hj-d.~)(-w+“,-d.,)e”

(32)

Since d, and d, are purely imaginary, it would follow from
Eq. (32) that lie:+ ‘/eJ < 1. However, the catch here is that
Eq. (32) cannot hold since (H + D,) does not commute with
(I’+ DY) and, therefore, the analysis is not valid. Indeed we
saw empirically that convergence was unpredictable.

A better option is to evaluate these first-order derivatives
only at the start of the double sweeps. The resulting error
expression is

ey+‘= (0 + hj)(m + 0,) - 2utd.x + d,) e,!
(-o+h,)(-w+o,) ” (33)

In general one cannot show that the magnitude of the
coefficient in Eq. (33) is less than one. However, one
observes that for both large and small o this condition is
satisfied. For very small o (large dt), DAD1 reduces the low
frequency error rapidly and then shifts to the large o limit
and converges more slowly to the specified tolerance. In
practice, DAD1 manages the choice of w well with this
option; this is, in fact, the splitting choice we use in the next
section.

It is worth noting that this analysis gives some clues to the
proper handling of nonlinear terms. It is frequently possible
to subtract the linear part of nonlinear terms from both
sides of the equation. The new contribution on the left is
evaluated at the advanced time and its contribution is
frequently split as in the analysis leading to Eq. (27) rather
than that leading to Eq. (29). The remaining part of the
nonlinear term stays on the right-hand side and is updated
only at the end of a full double sweep. Our choices in this
matter are influenced by analysis similar to that leading to
Eq. (33) rather than Eq. (32). As is certainly obvious by
now, there are no hard rules to handle nonlinearities with
AD1 and certain amount of testing is warranted.

1II.B. Application of DADI to the Coupled
Equations of Section II

We now discuss the application of this DAD1 algorithm
to the coupled set of equations, Eqs. (15) and (16), for the
inductive electric field in the SDF formulation. As we have
discussed, when the coupling between these equations is
strong, we need to solve these equations simultaneously.

Our notation describing the application to the two-
dimensional SDF equations requires the definitions in

18 HEWETT, LARSON, AND DOSS

Eqs. (20) and (3 1). Using these definitions we split the converge to the desired solution. The expression for the
system of three coupled scalar equations as n + 1 errors are

H-PASS

(-~o+H-p/2)<;+“~

=(--o- ~+d~)i”~+~~,$“+Qx

(-co+ H-p/2) (;+“2 (344

=(-o-V+~/2)5~+~D,~“+Q,
(-,+,)$“+‘/‘= (-co-V)II/“-D,<:-DJ;

V-PASS

(-u+ V-p/2) 5;”

=(-~-H+~/~)~~+“*+,uD,I,~~+Q~

(-co+ v-p/2)5;+’

=(-w-H+p/2)~;+1’2+pD,~“+Q,
Wb)

As in simple AD1 an iterated solution is obtained by
solving the equations in the horizontal (H) pass, using the
latest values for the second-order unknowns on the right
side, followed by the vertical (V) pass, that uses the results
from the previous H pass and so on, until convergence.
Defining a vector E of ordered unknowns,

E= (i”,(l), 5,(l), ‘Ml), 5,(2), 5,(2), $(2), t;,(3), . ..I.

the three equations under each H or V pass are solved
simultaneously by a banded linear matrix solver

where # and 9’” are banded matrices obtained from the left-
hand side of Eqs. (34a) and (34b), respectively, using an
ordering consistent with definition of E. Convergence, for
tests presented here, is defined to occur when both the L2
norm of the normalized change, I/En+ ’ - Zn 11/11E,, 11, and the
L2 norm of the residual Ilresil/llQll, are less then a given
error criterion.

Only one acceleration parameter was used for all three
equations though each o could be “preconditioned” by nor-
malizing it to the diagonal coefficient in each equation at
each point. All first-order derivative terms were placed on
the right-hand side and updated only at the start of each
iteration. An analysis similar to that used to obtain Eqs. (27)
and (33) reveals when terms can be updated and still

e::‘=
(W + hx,j- p/2)(0 + V,,j-p/2) ez,j- 2wpdxe”,,i

(-o+h,.j-~/2)(-o+V,.j-~/2)

eH+l = (o+h,j-~/2)(u+Vy,j-1~/2)e~,j-2u~d,eZ,i
I’. .I (-u+h,,j-~/2)(-o+u,,j-~/2)

e
n +, _ (0 + h$,j)(u + Ue,j) e;,, + 2w,udxe:,j + 2copdyeG,i
i.i - (-w+h,J(--o+v,,,)

(35)

Note that we have split the ,ug term just as we did for & in
the scalar Helmholtz equation, Eq. (24). The first-order
term pD$ is treated as we did for Eq. (30).

A rule of thumb is that terms should be computed
implicitly on the left before that term is updated on the right.
For example, convergence will degrade and perhaps simply
oscillate at a residual level above our convergence criteria if
one uses a n + i value computed in the H pass in the first-
order terms on the right-hand side of the V pass equations.

Another variant that provides better symmetry between
H and V passes than Eqs. (34) is

H-PASS

V-PASS

(-co+ v-p/2)5:+’

=(-cLI-H++/~)~~+“~+Q~+~D~~~+“~

(-co+ v-p/2)5;+’

=(-u-H++/~)~;+“~+Q~~+~D~$~ (36b)

(-co+ V)ly”

=(-o-H)II/“f’f2-DD,5:f’J2-D,~5~

that does provide increased performance for small p. It does
complicate the algorithm somewhat and does require the
storage of <, and $ at the half iteration level. This variant
is compared in the results section.

This symmetric version offers another possibility for the
first-order terms. We explored the effect of making the first-
order terms implicit on the appropriate pass; for example, in

SOLVING PDE USING DYNAMIC AD1 19

the H pass on the equation for [“,’ ‘I* we could easily change reader may guess, we feel this method already has enough
the term pD,t,V~"* to pDxt+!P"2, thus making the itera- degrees of freedom and, as we show in the next section, the
tion more implicit. This possibility gives a pentadiagonal results using the tridiagonal DAD1 method are already
rather than a tridiagonal system. Though this arrangement quite attractive.
may ultimately prove to give the smallest CPU time to con-
vergence, there are several obstacles in its implementation.
A minor consideration is the additional storage; we need to IV. TESTS AND COMPARISONS
store live diagonals rather than three, each of which is
3 x N, x N,. A clue to the most crucial issue is the fact that
we need to store the entire diagonal. It is necessary to store 1V.A. The Test Problem

these elements because banded matrix solutions are To test the DAD1 method on a realistic problem relevant
inherently recursive. The whole matrix solution can be to our proposed Darwin application, we have contrived a
vectorized only by making the innermost DO loops over test by specifying the answer Eo,,, and then “deriving” the
the other direction-and vectorization is imperative for source function Q to be used in Eq. (15tas in Ref. [S]. We
unitasking speed. Though a scalar pentadiagonal method then evaluate our solution procedures as they regenerate
can easily be modified for this type of vectorization, we have this solution. In this test case, we work on a Cartesian mesh
no a priori evidence that it will converge faster; it will take with 39 x 3 1 mesh points in the x and y directions. The mesh
longer per iteration and it will take more storage. As the spacing is uniform with dx = 0.526 and dy = 0.667. To

b
20 0

FIG. 1. These plots show graphically the functional forms used for the test case. (a) shows the initial choice of the E field; (b) shows the potential I$,
from which we derive the irrotational part of the initial E field in (a). (c) is a vector representation of the solenoidal part E,, of the original E,,--obtained
by subtracting the irrotational part from the original. This vector field E
in this test case is shown in (d).

a s0, serves as the desired solution. The coupling function fl with p,, = 1 .O used

20 HEWETT, LARSON, AND DOSS

minimize boundary condition difficulties we use periodic
boundary conditions in y.

For the tests considered here, we have chosen the desired
answer as the solenoidal part of

E = exp(-(x - ~)~/5)($, -e.“) cos(71)1/10).

The solenoidal field itself is obtained by decomposition
using the procedure given in Eqs. (1). Shown in Fig. 1 are
graphical representations of this process. In Fig. la we have
a vector plot of the total E field followed, in Fig. lb, by a
contour plot of the potential function that is consistent with
the irrotational part of the total field. In Fig. lc is a vector
plot of the solenoidal field Eso, that is the “answer”-
here denoted as E, S0,. Using this field we can construct,
using finite differencing, V2E,,, that, using Eq. (5),
determines jsol.

The next step is to determine a value for Q. If we take the
form of jFO, that we have just constructed as the source term

inverse of A. Thus M is approximately a unit matrix with
condition number N 1. By specifying a small number of
parameters, the routine will automatically generate the
required sparsity patterns and coupling stencils; making the
task of setting up the coefficient matrix A straightforward.

It is necessary to dimension the number of non-trivial
diagonals to the maximum number possible for the most
general coupling allowed by the 5- or 9-point operator
stencil. In our case there were 19 non-zero diagonals;
however, we were using a 5-point operator stencil and
it turned out that the required number of non-trivial
diagonals was 31. Because each diagonal represents three
full 2D arrays, this extra storage is of concern when using
machines with small memory or unfavorable memory
charging algorithms. Our application of CPDES2 required
the storage of 72 x 3 full 2D arrays-though at least 24 of
these arrays remain unused by this application.

1V.C. Results
j, then we can construct the Q array using Eq. (6b) as soon
as we specify p. The physics of the model tells us that p will In Table III we summarize the results of our studies

be related to the plasma density and thus positive definite: carried out on the E machine at NERSC, a Cray XMP,

we choose the form using the standard CFT compiler. We give, for BCG and
two variants of DAD1 applied to our test problem, the

p(i,j) = pJx(i)/20 + 1 - sin(nv(j)/5)). number of iterations iter, the largest residual res of any
equation across the entire mesh, the largest difference dif

A contour of this form is given in Fig. Id. We now have all
the source-related arrays needed for the solution of
Eqs. (15) and (16) initialized. The test is to see how well the
solution of Eqs. (15) and (16) followed by (17) agrees with Method

the original E, s0,.
DADI

TABLE III

Iter Res

0 13 1.21 x 1om4 5.43 x lo-*
0 13 1.21 x 1o-4 5.43 x 1om2
0 42 7.63 x 1O-4 5.43 x 1o-2

1 55 5.06 x 10m4 3.23 x lo-*
1 40 8.83 x lo-“ 3.23 x 10m2
1 162 5.79 x 1o-4 3.22 x 10m2

10 266 6.27 x 10m4 1.26 x 10m2
10 55 5.89 x 10m4 1.38 x 10m2
10 420 1.98 x 10m4 1.15 x 1om2

100 20 3.76 x 10-j 8.22 x 10m3
100 38 2.90 x 10m4 3.56 x 10m3
100 665 5.38 x 1O-4 3.58 x 10m2

1,000 7 1.07 x 1om4 2.10 x 1om3
1,000 18 3.26 x 1O-4 9.52 x 10 -4
l,C@O 754 9.94 x 1om4 2.37 x lo-’

2,000 7 6.39 x 10m5 9.17 x 1om4
2,000 16 3.00 x 1om4 5.40 x 1o-4
2,~ 758 8.60 x 1o-4 1.86 x 1o-3

10,000 8 1.86 x 10-j 1.99 x 1o-4
10,ooo 12 3.44 x 1o-4 3.56 x 1O-4
10,000 875 8.44 x 1O-4 2.04 x lo-’

1V.B. The Preconditioned Biconjugate
Gradient BCG Method

The biconjugate gradient method [3], a generalization of
the conjugate gradient method, is an iterative method that
solves the nonsymmetric matrix equation Ax = b. The con-
vergence rate depends upon the condition number of A and
the extent to which the eigenvalues of A are “clustered.” A
large condition number will yield poor convergence. If the
eigenvalues are closely grouped the condition number will
be small and rapid convergence will result. The BCG
method does not possess a minimization property as does
CG; thus, a monotonic decrease of error is not guaranteed
and the possibility of breakdown exists. However, for most
cases BCG yields faster convergence than applying CG to
the normal (squared matrix) equations.

The preconditioning used in the CPDES2 package is
incomplete LU factorization, a less elaborate procedure
than that required for the CG method. Preconditioning
transforms the equation Ax = b into My = c, such that the
eigenvalues of M are more clustered than those of A. For
ILU preconditioning, M = BA, where B is an approximate

DADI’
BCG

DAD1
DADI’
BCG

DAD1
DADI’
BCG

DADI
DADI’
BCG

DADI
DADI’
BCG

DADI
DADI’
BCG

DADI
DADI’
BCG

Dif CPU

0.486
0.485
5.20

2.14
1.64

18.2

10.4
2.28

46.0

0.756
1.46

72.3

0.245
0.679

81.9

0.246
0.601

82.2

0.288
0.438

94.8

SOLVING PDE USING DYNAMIC AD1 21

between the “correct” answer and the rederived answer,
dif = 1 E, so, - Eso, 1, and the CPU time in seconds required
by each solution. We have used a modest residual criterion
E,,, = 1 x 10-3, consistent with the expected Darwin model
application and our finite-difference truncation error.

For the current test case, we find DADI, as embodied in
Eqs. (34) to be significantly faster than BCG. In addition to
the speed, the storage required by DAD1 is only 7 x 3 (one
for each unknown) full 2D arrays, counting the unknown
itself. The algorithm we used for BCG requires at least
72 x 3 full 2D arrays-though, as previously noted, at least
24 of these arrays appear not to be needed. Storage
requirements aside, however, it is clear that even the conser-
vative DADI provides a significant CPU advantage over
BCG in this application.

The results obtained with DADI’, a variant of DAD1 with
all the p terms on the left as in the three-equation analog of
Eqs. (28), are also given. Despite the caveats concerning the
possible oscillation of the residual using DADI’ discussed in
the previous section for this variant, DADI’ works faster for
small p,, by roughly a factor of two. Consistent with our pre-
vious discussions, we still use this variant with caution and
note that the original method DADI, that cannot exhibit
this residual oscillation, is much superior for large PO-an
advantage especially apparent for smaller error criterion. To
restate, DAD1 always works. DAD1 is far superior for large
pLo and only a factor of two slower for small pO, see Table IV.
The factor of two advantage that DADI’ enjoys for small p0
suggests that the expected residual oscillation occurs at
residual values smaller than our E,,, criterion. Further, we
may be able to take advantage of this situation with an
adaptive implicit-explicit mix for the p term that depends
on the local p value.

Finally, we remark that for p0 = 10.0 and 100.0, a regime
in which p and V* are roughly comparable for our mesh, the
choice of DAD1 schemes may vary with E,,,, see Table V.
Our truncation error is also evident in that the maximum

TABLE IV

Method

E,s, = 1om5

DAD1
DADI’

DADI
DADI’

E,,, = 1O-4

DADI
DADI’

DADI
DADI’

PLO Iter Res Dif CPU

1 151 8.42x 10m6 2.71 x 1om2 5.93
1 90 8.85x lO-6 2.71 x 10-Z 3.78

10 1135 6.67 x 10m6 1.65 x 10m2 44.6
10 383 6.51x lO-6 1.65 x 1O-2 17.6

1000 97 3.90x 1om5 3.84x 1O-3 3.15

1000 550 8.57 x lO-5 7.91 x 1o-4 21.6

2000 10 3.19 x 10-5 2.34 x 10m3 0.37
2000 357 4.29x 1O-5 3.94x lo-4 14.4

TABLE V

Method E,,, Iter Res Dif CPU

/lo= 10

DADI 1om3
DADI’ 1o-x
BCG 10-’

DADI 1om4
DADI’ 1om4
BCG 1o-4

pO=lOO

DADI lo-3
DADI’ lo-3
BCG 10m3

DADI 1om4
DADI’ 1om4
BCG

266
55

420

621
231
421

20

38
665

1044
307
685

6.27 x 1O-4
5.89 x 10m4
1.98 x 1O-4

7.24x 10m5
5.05 x 1o-5
7.87~10~~

3.76 x 10m5
2.90 x 10m4
5.38 x lo-“

1.26x lo-*
1.38 x lo-*
1.15 x torn2

1.17 x lo-2
1.18 x 10m2
1.15 x 10-2

8.22x 10m3
3.56 x 10m3
3.58 x lo-’

2.87 x lo-’
3.12 x lo-’
3.58x lo-’

10.4
2.28

46.0

24.3
10.6

46.5

0.756
1.46

72.3

discrepancy 1 E, so, - Eso, 1 is nearly the same for E,,, = lO--3
and 10m4. This behavior, consistently found for pLg < lo.,
suggests that more stringent error criteria provide only
better solutions to the finite-difference equations; the
physical solution does not change.

Further, we note that the CPU time required to reach
the smaller E,,, increases only for the two DAD1 ver-
sions-suggesting that the major portion of the residual
error is corrected early in the iteration. On the other
hand, the CPU time for BCG remains almost the same-
suggesting that the part of the error vector responsible for
the large residual is not corrected by BCG until near the end
of the iteration. If for some reason the iteration is stopped
before the convergence criteria is met, it appears that the
DAD1 answer will be more nearly correct.

We stress again that we have made no effort to find an
optimal preconditioner for either DAD1 or BCG. It is
entirely possible, perhaps probable, that BCG can be made
to converge more rapidly with a preconditioner motivated
by physics intuition. It is also likely that DAD1 would
respond favorable to such attention.

We also find a hint that DADI’ can be improved by
roughly another factor of two for the smaller values of p by
the more symmetric form of splitting the first-order terms as
given by Eqs. (36). For example, the symmetrized version
of DADI’ converges in 181 iterations taking 8.27 s for
E,,, = lO-4 and p0 = 100. The symmetrized version of
DAD1 is also faster-taking 583 iterations in 26.6 s for the
same case-though both symmetric and nonsymmetric
forms of DAD1 are significantly slower than either form of
DADI’ for these parameters. These symmetrized forms
require another three full 2D storage arrays for the addi-
tional “time” levels and are slightly more complex to code.

22 HEWETT, LARSON, AND DOSS

The symmetrized versions do not work better in all cases,
however, and previous experience suggests that the sym-
metric form may be less tolerant in strongly nonlinear
problems. Now that we have demonstrated that a low cost
solution of the SDF equations can be obtained with this
method, we choose to leave the final optimization choices
for specific applications to the user, where other issues such
as geometric dependence and robustness may influence the
choices.

1V.D. Boundary Conditions

Boundary conditions were chosen such that the original
E OsO, could be recovered. The boundary conditions needed
to accomplish this are not unique. For the typical p0 = 1.0

case shown in Fig. 2 we have taken + = 0 at xmin and xmaX
and have used conditions given by Eq. (17) for g so that the
desired E, SOl is regenerated at the boundary; y-boundaries
are periodic. Shown in Figs. 2a and b are a vector plot of 5
and a contour plot of $. Shown in Fig. 2c is a vector plot of
the difference between the original EO,,, and the new one
that has just been computed by DADI. The number given
on the figure is the magnitude of the largest difference. This
value is consistent with the truncation error of our 5-point
V2 operators.

The choice of II/ = 0 guarantees that V$ will be zero for
the y component of 5 on the boundary. Another equally
acceptable choice that generates the same physical solution
is the Neumann condition V$ = 0 in the x-direction. In this
case V$ # 0 in the y-direction and results in significantly dif-
ferent representations for both 5 and $. Shown in Fig. 3 are

b v

- --z=ee--c--/~-~~

: A----.---

FIG. 2. In (a) we show a vector plot of 6 and (b) the corresponding scalar + that results from our solution with /~a = 1.0. This is the solution for
the case with Dirichlet boundary conditions at x,,,~” and x,,, and periodic boundary conditions in the y direction. In (c) we show the vector difference
between the derived E,,, , using (a) and (b) from this figure, and the original E. S0l from Fig. lc. Note that the magnitude of the largest difference, shown
in the inset, is two orders of magnitude smaller than the magnitude of the solution and is consistent with the truncation error of the finite difference
approximation.

SOLVING PDE USING DYNAMIC ADI 23

Longest “ec,Or = 1.22

4

b ul

1 20.0

FIG. 3. Again we show a vector plot of (a) 5 and the corresponding scalar (b) II/ that result with I,, = 1.0. In this case the solution Eso, is the same
as in Fig. 2, to within truncation errors, but 5 and $ look much different because of the selection of Neumann zero boundary conditions at x,,,. We
have maintained Dirichlet conditions at .x,,,.~ and periodic boundary conditions in they directions. (c) shows the vector difference between this solution
E,,, , using (a) and (b) from this figure, and the original E,, s0, in Fig. lc.

the plots corresponding to those in Fig. 2 that have this
Neumann condition applied only to the X,in boundary.
Comparing the solutions for 4 and II/ with the Dirichlet con-
ditions in Fig. 2 with these solutions reveals quite different
spatial dependence but, as evident by the small maximum
vector difference, the original solution is recovered.

V. SUMMARY

While more work remains to be done in the area of
finding optimal splitting choices for these and other
equations as functions of their parameters, we feel that our
results to date display exciting possibilities for dynamic AD1
solution of strongly coupled equations. We believe that we
may now achieve the advantages inherent in the SDF model

without squandering the CPU gains on solution methods
not well suited to the SDF model.

ACKNOWLEDGMENTS

We thank Dr. D. V. Anderson for numerous discussions and help with
the ILUBCG algorithm. We acknowledge very useful discussions with
Dr. R. Galinas in the development of this generalization of DADI.
We also thank Dr. Jack Byers for a critical reading of the manuscript.
Work performed under the auspices of the U.S. Department of Energy
by the Lawrence Livermore National Laboratory under Contract
W-7405-ENG-48.

REFERENCES

1. See, for example, D. W. Hewett, J. Compuf. Phys. 38, 378 (1980);
E. J. Horowitz, D. E. Shumaker, and D. V. Anderson, J. Compur.
Phys. 84,279 (1989); D. S. Harned, J. Comput. Phys. 47,452 (1982).

24 HEWETT, LARSON, AND DOSS

2. D. W. Hewett and A. B. Langdon, J. Comput. Phys. 72, 121 (1987).

3. D. V. Anderson, A. E. Koniges, and D. E. Shumaker, Comput. Phys.
Commun. 51, 391 (1988).

4. D. W. Hewett and C. W. Nielson, J. Comput. Phys. 29,219 (1978).

5. D. W. Hewett and J. K. Boyd, J. Compur. Phys. 70, 166 (1987).

6. C. W. Nielson and H. R. Lewis, in Methods Comput. Phys., Vol. 16,
p. 367 edited by B. Alder, S. Fernbach, M. Rotenberg, and J. Killeen
(Academic Press, New York, 1976).

7. J. Busnardo-Neto, P. L. Pritchett, A. T. Lin, and J. M. Dawson,
J. Comput. Phys. 23, 300 (1977).

8. J. K. Boyd, Ci. J. Caporaso, and A. G. Cole, IEEE Trans. Nucl. Sci.
Ns-32 (5), 2602 (1985).

9. H. Weitzner and W. Lawson, Phys. Fluids BI 10, 1953 (1989).

10. Z. Mikic and E. C. Morse, J. Compuf. Phys. 61, 154 (1985).

11. D. W. Peaceman and H. H. Rachford, J. Sot. Indus. Appl. Math. 3,28
(1955).

12. S. Doss and K. Miller, SIAM J. Numer. .4nal. 16, 837 (1979).

13. D. W. Hewett and R. L. Spencer, Phys. Fluids 26, 1299 (1983).

